Content available at: https://www.ipinnovative.com/open-access-journals

Journal of Contemporary Orthodontics

Journal homepage: https://www.jco-ios.org/

Original Research Article

Feeding effectiveness of nasoalveolar molding appliances made with polymethyl methacrylate vs. polyamide in newborns with unilateral cleft lip and palate: A randomized controlled trial

Sangeetha Morekonda Gnaneswar^{1*}, Nirmala Anandan²

¹Dept. of Orthodontics, SRM Dental College, Bharathi salai,Ramapuram, Chennai, Tamil Nadu, India.

²Dept. of Biochemistry, SRM Dental College, Bharathi salai,Ramapuram, Chennai, Tamil Nadu, India.

Abstract

Background: Infants with cleft lip and palate face feeding challenges due to anatomical disruptions, leading to complications like nasal regurgitation, choking, and poor nutrition. Nasoalveolar molding (NAM) appliances, traditionally made from polymethyl methacrylate (PMMA), reduce the severity of cleft before surgery, help seal the oronasal opening and improve feeding. PMMA's rigidity limits adaptability, potentially reducing feeding efficiency. Polyamide, a crystalline polymer with higher flexibility and reduced thickness may provide a better anatomical adaptation, enhancing feeding performance.

Aim: To evaluate the feeding effectiveness of NAM appliances made from PMMA versus polyamide in newborns with unilateral cleft lip and palate. **Materials and Methods:** A clinical trial (2020–2024) at two Indian hospitals enrolled 76 infants, randomized into Group A (PMMA) and Group B (polyamide). After attrition, 58 infants remained. NAM appliances were activated biweekly. Bottle-feeding volumes were measured three days before and after NAM placement and at weeks 4 and 8. Weight was recorded at baseline (T0), Day 3 (T1), Weeks 4 (T2), 8 (T3), and 12 (T4) respectively.

Results: Group B had significantly higher feeding volumes on Day 3 (662 ml and 627.87 ml, p = 0.001) and over the three-day average (627.12 ml and 608.5 ml, p = 0.040). No significant difference was noted at Week 4 (p = 0.103), but Week 8 showed improvement in Group B (1141.25 ml and 1110 ml, p = 0.045). Weight gain was significantly higher in Group B at T1 (0.16 kg, p = 0.047), T3 (0.32 kg, p = 0.0003), and T4 (0.35 kg, p = 0.0482).

Conclusion: Polyamide NAM appliances demonstrated superior feeding effectiveness and weight gain, supporting their use when feasible.

Keywords: Cleft lip and palate, Feeding, Naso alveolar molding, Polymethyl methacrylate, Polyamide, Randomized controlled trial

Received: 01-02-2025; Accepted: 29-08-2025; Available Online:14-10-2025

This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

1. Introduction

Feeding difficulties are a frequent concern among infants, particularly within the first six months of life. These challenges tend to be more significant in babies born prematurely or those with congenital conditions like cleft lip and palate (CL/P). Such infants are at a higher risk of suboptimal nutrition, which can contribute to infection risk, prolonged hospitalizations, and, in severe cases, mortality. Beyond the physical complications, such as nasal regurgitation, choking, and aspiration, feeding difficulties in early infancy can disrupt the social dynamics of mealtime, potentially straining the parent-child relationship and affecting the emotional well-being of both the caregiver and the infant. These children are more prone to having a lower

birth weight.^{2,3} Prolonged feeding times, increased fatigue, and insufficient nutritional intake, often leading to delayed weight.^{4,5} These issues can also contribute to developmental delays.^{6,7} The inability to establish effective feeding can negatively impact parent-infant bonding, leading to maternal feelings of inadequacy and a heightened risk of depression.^{7,8} These complexities highlight the need for tailored feeding interventions, including assistive feeding devices and comprehensive, objective assessments.

An obturator, a specialized feeding prosthesis, plays a critical role in establishing a functional seal between the oral and nasal cavities, thereby optimizing oropharyngeal coordination during feeding.^{4,9} Presurgical orthopaedic appliances, designed primarily to approximate cleft segments

^{*}Corresponding author: Sangeetha Morekonda Gnaneswar Email: sangsortho@gmail.com

and minimize the extent of the cleft deformity, inherently function as obturators. 10,11 Clinical evidence supports the efficacy of obturators in improving feeding outcomes 12-14 though some studies present heterogeneous findings.^{7,15} In the early 1990s, Grayson and Cutting, expanding upon Matsuo's foundational work, pioneered the NAM technique. 16,17 NAM helps reduce cleft size by approximating the cleft segments, contour the nasal framework, and elongate the columella, thereby optimizing nasal symmetry and establishing a more favourable anatomical configuration for primary cheiloplasty and rhinoplasty in CL/P. 18 This technique has significantly enhanced surgical outcomes in CL/P repairs and has gained widespread acceptance as an effective intervention.¹⁴ Beyond its physical benefits, NAM promotes early parent-infant bonding, fostering emotional well-being and positively influencing the child's mental development. These advantages underscore the importance of initiating NAM therapy as early as possible after birth.

Traditionally, polymethyl methacrylate (PMMA) has been the material of choice for NAM appliances due to its cost-effectiveness and ease of manipulation. However, PMMA's rigidity, bulkiness, and limited adaptability to changing oral structures may result in less effective obturation, leading to suboptimal feeding outcomes and reduced patient comfort. These challenges have necessitated the exploration of alternative materials. Polyamide thermoplastic materials have emerged as a superior alternative to PMMA in Denture fabrication. Polyamide, a crystalline polymer, boasts high flexural and impact strength, excellent flexibility, aesthetic appeal, and comfort, making it ideal for denture bases. It exhibits higher elasticity compared to traditional heat-polymerizing resins, greater heat resistance, and better ductility. Moreover, polyamide offers toxicological safety for patients with resin monomer or metal allergies. 19-21

As effective feeding relies on achieving adequate intraoral negative sucking pressure, an appliance that closely adapts to the cleft anatomy is essential. It is hypothesized that the higher elasticity and reduced thickness of polyamide, compared to PMMA, allow for superior anatomical adaptation, ensuring a more effective seal between the nasal and oral cavities. This, in turn, may enhance feeding performance and improve patient comfort, particularly for the delicate anatomy of neonates. Based on this premise, this study was conducted with the aim of evaluating the feeding effectiveness of nasoalveolar molding appliances made from polymethyl methacrylate versus polyamide in newborns with unilateral cleft lip and palate.

1.1. Hypotheses

 Null hypothesis (H₀): There is no significant difference in feeding effectiveness between Nasoalveolar Molding appliances made with polymethyl methacrylate and those made with

- polyamide in newborns with unilateral cleft lip and palate.
- 2. **Alternative hypothesis (H₁):** There is a significant difference in feeding effectiveness between Nasoalveolar Molding appliances made with polymethyl methacrylate and those made with polyamide in newborns with unilateral cleft lip and palate.

2. Materials and Methods

2.1. Study design and setting

This study was conducted as a randomized controlled trial between Jan 2020 and June 2024 at two institution-based hospitals in South India. Institutional ethics committee approved the study (IRB/2018/No.104). The trial was registered in CTRI Reg.no.CTRI/2020/01/022796.

2.2. Sample size and randomization method

The sample size for the study was determined to be 56, for a power of 80% and a 95% confidence interval. Error! Reference source not found. To account for potential dropouts and loss to follow-up, a total of 76 participants were enrolled from an initial screening of 90.

2.3. Inclusion criteria

Infants aged 1 week to 8 weeks diagnosed with unilateral CL/P.

2.4. Exclusion criteria

Infants with Syndromic CL/P, Infants older than 2 months, Infants who had undergone lip surgery, Infants with other medical conditions such as severe respiratory or cardiac conditions, hearing loss. Parents / Caregivers of all the infants consented to participate in the study. Simple randomization was employed to allocate participants into two study arms: Group A – Regular NAM appliance (PMMA), and Group B Modified NAM appliance (polyamide). Randomization software was used to generate random sequences (www.sealedenvelope.com). Allocation sequence was concealed to prevent selection bias. Unique randomization code was assigned to the Participants upon enrollment. Attrition Management: Of the initial 76 participants, 18 were excluded from the study due to a combination of reasons: missed follow-up visits (n=5), commuting difficulties (n=4), severe respiratory infections requiring hospitalization (n=2), and mucosal irritation leading to discontinuation of the appliance (n=7). Data from the remaining 58 participants were included in the final analysis, with 30 in GroupA and 28 in Group B.group). The remaining dataset ensured robust statistical power and validity. Investigators and data collectors were blinded to the allocation sequence.

NAM Appliance Protocol - Impressions were taken using putty silicone (Dentsply Aquasil, Dentsply Sirona Inc., Noida, U.P, India), and models were prepared with type IV

Die stone (GC Fuji Rock, GC India Dental Pvt. Ltd., Telangana). Group A NAM appliance was fabricated using cold-cure acrylic material (DPI RR, Dentsply Sirona Inc., Noida, U.P., India) following Grayson's method. To Group B NAM appliance was made with polyamide with injection molding technique. Activation of the appliance for palatal molding was done every two weeks. Group A activation was done with soft liners (GC India Pvt Ltd, Isnapur, Telangana, India) added preferentially while group B activation was done using soft-liners with primers (Avue, Dental Avenue Pvt Ltd, Palghar, India). Peters (Medela AG, Switzerland) or Pigeon, long (Pigeon India Pvt Ltd, Uttar Pradesh, India)

2.5. Data collection

- 1. **Feeding assessment:** The amount of feeding from bottles was measured for three days before and three days after the delivery of the NAM appliance. The mean of these values were taken as T0 and T1 respectively. Follow up was recorded at week 4(T2) and at week 8(T3)
- 2. **Weight measurements:** Infants were weighed using a digital weighing scale (Easycare, German Tech, Mumbai, Maharashtra, India) three days before and three days after receiving the NAM appliance. The mean of these measurements was recorded as T0 and T1 respectively. Additional weight measurements were taken at four weeks (T2), eight weeks (T3)and twelve weeks(T4)

2.6 Outcome Measures

Primary outcome measure: The total volume of milk consumed in 24 hours was measured for three consecutive days both before and after the delivery of the NAM appliance and at the end of 4 and 8 weeks.

Secondary Outcome Measures

Mean change in the weight at the end of 3 days, immediately before and after the appliance delivery, and at 4,8 and 12 weeks.

2.7. Statistical analysis

IBM SPSS Statistics for Windows, Version 26.0, Armonk, NY: IBM Corp. Released 2019 was used to analyze the data, with a significance level set at 5% (P- 0.05) and Metrics: Mean, Count, Maximum, Minimum, Standard Deviation (S.D), and Coefficient of Variation (CV). For analysis of feeding measurements, Levene's Test was conducted to assess the equality of variances, ensuring that the assumptions for parametric tests (such as the t-test) were met. As the data appeared to follow a normal distribution with equal variances, t-tests for Equality of Means were applied to determine if the observed differences in performance metrics (mean values) between the two systems were statistically significant, rather than due to random variation. These tests

help draw reliable inferences about the effectiveness and consistency of the modifications under different conditions and over time. For assessing the weight changes during the study period, Paired t-tests within each group were conducted while independent t-tests between Groups A and B at each time point to compare group differences.

3. Results

Out of 58 participants, group A had 17 boys and 13 girls while group B had 18 boys and 10 girls with an overall 35 boys and 23 girls. Infant's mean age was 2.1 weeks and mean weight at presentation was 2.56kg (**Table 1** and **Figure 1**)

3.1. Feeding metrics

Group statistics convey the mean of before and after the appliance delivery at different points of time (**Table 2**). Equality of Variances (Levene's Test): Across all metrics and time points, the significance values were above 0.05, confirming that the assumption of equal variances was valid. Hence, the results from the row "Equal variances assumed" were used for inference (**Table 3**).

3.2. Day-level analysis

Day-Level Analysis: Pre- intervention- The t-tests for these days yielded 0.756 for Day1, 0.919 for Day2, and 0.789 for Day3 at T0, showing no statistically significant difference between the groups. Post-intervention- The results from Day 1 and Day 2 showed p-values of 0.319 and 0.155, respectively, suggesting no statistically significant differences between the groups. On Day3, a significant difference in the mean was observed 34.125 ml (p = 0.001), Average of days 1-3 showed a significant result (p= 0.040), with a mean difference of 18.625 ml. At week 4, the group B had a higher mean, but the difference was not statistically significant (p = 0.103). At week 8, a significant difference was observed (p = 0.045), with a mean difference of 31.250ml (Table 3). Mean Co-variance (cv) values for the pre intervention days in group A was 7.59 and in group B, it was 5.65. Post-intervention average cv values showed lower variability in group B (5.08) compared to group A (7.51). At weeks 4 and 8, group B continued to show a reduced CV (8.02 and 5.72) compared to group A (8.98 and 6.44) respectively (Table 4).

3.3. Weight changes

At T0, no significant difference was observed between the groups (p = 0.735). By T1, a significant difference was noted (0.16 kg, p = 0.047). At T2, a marginal difference was observed 0.13 kg (p = 0.1). At T3, a highly significant difference was identified (0.32kg, p = 0.0003) while at T4, a borderline significant difference was observed (0.35 kg, p = 0.0482) (**Table 5, Figure 2**).

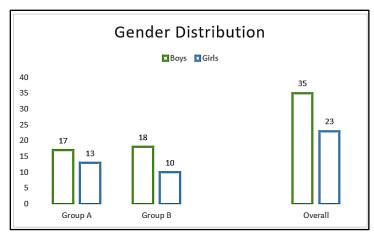


Figure 1: Descriptive statistics -Gender distribution of the participants

Table 1: Descriptive statistics -Mother's age and the infant's age and weight

	N	Mean	Std. Dev
Mother's Age (years)	58	31.2	5.17
Infant age (weeks)	58	2.1	.74
Weight of the baby (kgs)	58	2.56	.42

N-number of samples, Std. Dev.-standard deviation

Table 2: Mean value of feeding measurements on Day,1,2,3, week 4 and week 8

Group Statistics											
Group		N	Mean	Std. Deviation	Std. Error Mean						
Day1_Before	Group A	30	509.7500	39.18971	6.19644						
	Group B	28	507.2500	32.00461	5.06037						
Day2_Before	Group A	30	522.8750	44.22970	6.99333						
	Group B	28	523.7500	31.51617	4.98314						
Day3_Before	Group A	30	546.7425	41.71996	6.59650						
	Group B	28	549.0000	33.03456	5.22322						
Before Average	Group A	30	526.4565	39.96894	6.31964						
	Group B	28	526.6668	29.75380	4.70449						
Day1_After	Group A	30	596.1250	45.74858	7.23349						
	Group B	28	587.3750	30.94635	4.89305						
Day2_After	Group A	30	623.2500	47.19776	7.46262						
	Group B	28	610.2500	32.38293	5.12019						
Day3_After	Group A	30	627.8750	52.34011	8.27570						
	Group B	28	662.0000	35.53416	5.61844						
After Average	Group A	30	608.5003	47.10899	7.44858						
	Group B	28	627.1253	30.90259	4.88613						
Week4	Group A	30	896.8750	83.07241	13.13490						
	Group B	28	925.5000	71.88566	11.36612						
Week8	Group A	30	1110.0000	65.32709	10.32912						
	Group B	28	1141.2500	71.46812	11.30010						

Table 3: Comparison of mean feeding measurements between Group A and Group B

	for Equality of ances		t-test for Equality of Means								
F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Cor Interva Differ	l of the			
							Lower	Opper			

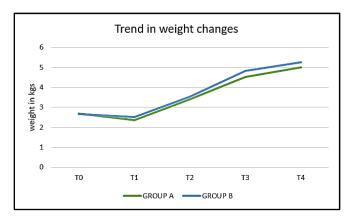

			1	ı			=	- *	,	
Day1_B	Equal	0.002	0.968	0.312	78	0.756	2.50000	8.00020	-13.42718	18.4271
efore	variances									8
	assumed									
	Equal			0.312	75.00	0.756	2.50000	8.00020	-13.43720	18.4372
	variances not				5					0
	assumed									
Day2_B	Equal	0.356	0.552	-0.102	78	0.919	-0.87500	8.58711	-17.97061	16.2206
efore	variances									1
	assumed									
	Equal			-0.102	70.48	0.919	-0.87500	8.58711	-17.99936	16.2493
	variances not				6					6
	assumed									
Day3_B	Equal	0.151	0.698	-0.268	78	0.789	-2.25750	8.41403	-19.00855	14.4935
efore	variances									5
	assumed									
	Equal			-0.268	74.10	0.789	-2.25750	8.41403	-19.02243	14.5074
	variances not				5					3
	assumed									
Before	Equal	0.058	0.810	-0.027	78	0.979	-0.21025	7.87846	-15.89506	15.4745
Averag	variances									6
e	assumed					_				
	Equal			-0.027	72.06	0.979	-0.21025	7.87846	-15.91541	15.4949
	variances not				9					1
	assumed									
Day1_	Equal	1.244	0.268	1.002	78	0.319	8.75000	8.73300	-8.63606	26.1360
After	variances									6
	assumed									
	Equal			1.002	68.51	0.320	8.75000	8.73300	-8.67407	26.1740
	variances not				2					7
	assumed									
Day2_	Equal	1.703	0.196	1.436	78	0.155	13.00000	9.05025	-5.01767	31.0176
After	variances									7
	assumed									
	Equal			1.436	69.05	0.155	13.00000	9.05025	-5.05449	31.0544
	variances not				8					9
	assumed									
Day3_	Equal	1.435	0.235	3.412	78	0.001	34.12500	10.00270	14.21115	54.0388
After	variances									5
	assumed			2 // 2	10.15	0.004				
	Equal			3.412	68.65	0.001	34.12500	10.00270	14.16835	54.0816
	variances not				2					5
A.C:	assumed	1.700	0.101	2.001	70	0.040	10.62500	0.00010	0.00010	26.2500
After	Equal	1.799	0.184	2.091	78	0.040	18.62500	8.90818	0.89018	36.3598
Averag	variances									2
е	assumed	1		2.001	(7.22	0.040	10 (2500	0.00010	0.94575	26 4042
	Equal			2.091	67.32	0.040	18.62500	8.90818	0.84575	36.4042
	variances not				0					5
XX7 1 4	assumed	1.050	0.266	1.640	70	0.102	20. (2500	17.26002	5.05505	(2.2050
Week 4	Equal	1.253	0.266	1.648	78	0.103	28.62500	17.36993	-5.95587	63.2058
	variances									7
	assumed	1		1 (40	76.40	0.102	20 (2500	17.26002	5.00711	62 2171
	Equal			1.648	76.42	0.103	28.62500	17.36993	-5.96711	63.2171
	variances not				3					1
W/a a 1 O	assumed	0.064	0.001	2.041	70	0.045	21.25000	15 20057	0.77000	(1.7200
Week 8	Equal	0.064	0.801	2.041	78	0.045	31.25000	15.30957	0.77098	61.7290
	variances									2
	assumed			2.041	77.07	0.045	21.25000	15 20057	0.76712	(1.7220
1	Equal			2.041	77.37	0.045	31.25000	15.30957	0.76713	61.7328
	******				()					
	variances not assumed				9					7

Table 4: Co-variance determination between group A and B with respect to feeding metrics

			Group	A		Group B							
	Mean Cou Maximu			Minimu	CV	Mean	Cou	Maximu	Minimu	S. D	CV		
		nt	m	m				nt	m	m			
Day1_Befor	509.7	30	650.00	430.00	39.1	7.6	507.2	28	580.00	450.00	32.0	6.3	
e	5				9	9	5				0	1	
Day2_Befor	522.8	30	680.00	430.00	44.2	8.4	523.7	28	600.00	460.00	31.5	6.0	
e	8				3	6	5				2	2	
Day3_Befor	546.7	30	700.00	480.00	41.7	7.6	549.0	28	620.00	490.00	33.0	6.0	
e	4				2	3	0				3	2	
Before	526.4	30	676.67	446.67	39.9	7.5	526.6	28	596.67	470.00	29.7	5.6	
Average	6				7	9	7				5	5	
Day1_After	587.3	30	750.00	520.00	45.7	7.6	596.1	28	650.00	540.00	30.9	5.2	
	8				5	7	3				5	7	
Day2_After	610.2	30	780.00	520.00	47.2	7.5	623.2	28	680.00	540.00	32.3	5.3	
	5				0	7	5				8	1	
Day3_After	627.8	30	830.00	560.00	52.3	7.9	662.0	28	700.00	550.00	35.5	5.6	
	8				4	1	0				3	6	
After	608.5	30	786.67	533.33	47.1	7.5	627.1	28	676.67	546.67	30.9	5.0	
Average	0				1	1	3				0	8	
Week4	896.8	30	1100.00	750.00	83.0	8.9	925.5	28	1100.00	750.00	71.8	8.0	
	8				7	8	0				9	2	
Week8	1110.	30	1250.00	1000.00	65.3	6.4	1141.	28	1255.00	1050.00	71.4	5.7	
	00				3	4	25				7	2	

Table 5: Comparison of weight changes at different intervals between Group A and Group B

Weight in KGS n-40					T1			T2			Т3			T4	
	mea n	SD	P valu e	mea n	SD	P valu e	mea n	SD	P valu e	Mea n	SD	P value	me an	SD	P valu e
Group A	2.70	0.42	0.742 5	2.35	0.31 7	0.04 71*	3.41	0.34 8	0.106	4.51 8	0.3 48	0.000 3*	5.0 20	0.380	0.04 82*
Group B	2.67	0.45 9		2.51	0.33 7		3.54	0.29	3	4.83	0.3 80		5.3 70	0.390	

Figure 2: Trend in weight changes at different intervals of time between the groups

4. Discussion

Infants with CL/P often exhibit shorter sucking bursts, faster sucking rates, and shorter individual sucks compared to noncleft infants.8 Breastfeeding rates in this population are notably low. Danner et al. reported that, in their study 88.2% of mothers attempted breastfeeding, only 40% were successful.²⁵ Similarly, Pathumwiwatana et al. found 80% of the infants in their study were breastfed for 3-4 months, 10% were exclusively breastfed for six months. They concluded that exclusive breastfeeding was achievable in CL/P infants when a supportive relationship is established between the infant, parents, and extended family.²⁶ In the current study, although all mothers were advised to attempt direct breastfeeding, only 50% managed to initiate it effectively. Instead, most preferred expressed breast milk feeding via a bottle, highlighting the challenges of breastfeeding in CL/P infants.

Feeding interventions, including palatal obturators, specialized feeding bottles, and lactation education, have shown promise in addressing these challenges¹³⁻¹⁵. Turner et al. demonstrated that combining a palatal obturator with lactation education led to a reduction in feeding times, increased milk intake, and improved flow rates.¹³ Similarly, Prahl et al., observed better feeding outcomes in infants with obturators, although Choi et al. noted no significant differences in intraoral negative pressure generation with or without intraoral orthopedic plates.^{15,5}

The type of appliance used has also been shown to influence feeding efficiency. Britton et al. assessed feeding practices in 20 CL/P infants and found that 70% of parents who used pre-surgical appliances rated them as highly effective in facilitating feeding. Modified appliances, such as the Hotz-type plate studied by Kogo et al., were particularly beneficial. Their study reported that four infants with CL/P successfully breastfed while wearing the plate, consuming approximately 22 g per feeding trial. These findings underscore the potential of properly adapted appliances to improve feeding outcomes. In terms of materials, a study by Khateeb et al. evaluated vacuum-formed

nasoalveolar molding (VF-NAM) plates and found that they were effective in correcting the alveolar morphology and improving the nasal symmetry. Oday et al., studied NAM plates made from different materials and found that polyethylene terephthalate modified with glycol (PET-G) demonstrated better fit and retention compared to polyethylene terephthalate modified with glycol and ethylene vinyl acetate (PET-G/EVA) and PMMA, emphasizing the importance of material properties in achieving optimal outcomes. Alansari et al., incorporated chlorhexidine-loaded halloysite nanotubes (CHX-HNTs) fillers into PMMA-based appliances to reduce microbial infections.

The current study builds on the hypothesis that Polyamide's lightweight, flexible, and biocompatible properties may enhance anatomical adaptation and intraoral negative pressure generation, critical for effective feeding. The improved feeding outcomes in Group B (polyamide NAM) align with Kogo et al.'s findings on the importance of a welladapted appliance in facilitating breastfeeding and milk intake.12 Additionally, the statistically significant improvements observed in Group B after Day 3 reflect the adaptation period necessary for polyamide NAMs to optimize their functional benefits. This adaptation likely contributed to improved tongue-palate-teat contact during bottle feeding, reduced nasal regurgitation and feedingrelated aspiration risks, increased milk intake, and maternal confidence over time. At Week 4, improvements were observed in Group B but did not reach statistical significance. By Week 8, group B exhibited substantial and statistically significant performance gains, highlighting its long-term effectiveness. Additionally, a lower coefficient of variation (CV) in feeding outcomes for the polyamide NAM group suggested more consistent feeding responses over While both groups demonstrated improvements, Group B showed greater stability at later time points (Weeks 4 and 8), likely due to better palatal adaptation, improved tongue-palate-teat contact, and enhanced negative intraoral pressure generation(Table 4). Additionally, polyamide's thermoplastic nature allowed for easy modifications as the infant's oral cavity developed, ensuring continued effectiveness. In contrast, PMMA NAMs, while durable, were more rigid, limiting their adaptability to the dynamic intraoral environment and potentially reducing feeding efficiency. Both appliances effectively sealed the anterior cleft alveolus, and mothers were instructed on proper bottle-feeding techniques, including covering the cleft lip with the teat to ensure a lip seal. Similar to Turner et al.'s findings, both methods reduced nasal aspiration and spillage. 13 No significant gender-related differences in feeding outcomes were observed. Importantly, maternal confidence improved in both groups, suggesting that NAM use regardless of material positively influenced parental feeding experiences (Table 3 and Table **4**).

Weight gain is a critical indicator of feeding success in CLP infants. Martin et al. found that cleft type significantly impacts weight gain, with infants with isolated clefts of the hard and soft palate experiencing the most severe feeding difficulties and associated weight loss. The study also highlighted maternal factors, such as self-perception and mental health, as significant contributors to feeding success³¹. Woods et al. found no significant differences in weight gain between NAM and non-NAM groups during their evaluated timeframes.³² Shaw et al., found beneficial effect on the head circumference and the weight of squeezable bottle-feeding group as against rigid bottle.33 Although, Prahl et al., found an increase in Feeding velocity in the passive maxillary plate group against no plate group, their results did not show statistically significance for weight- for- age¹⁵. Goldberg reported a case where weight gain was observed after the obturator was delivered to assist feeding.⁹ Since the current study compared two NAM groups, comparing with similar studies was found challenging as the studies discussed above involved comparison between NAM vs no NAM groups. The results are discussed as observed in the study.

In the current study, while both groups showed significant improvements in weight gain over time, the differences became more pronounced in the long term. At T1, Group B showed significantly better weight outcomes than Group A, suggesting that polyamide NAMs provided improved feeding support early on potentially due to its better adaptability and comfort. By T2, Group B maintained a slight edge in weight gain. This trend may reflect the sustained benefits of the Polyamide NAM. At T3, the difference in weight gain became significant again, with Group B showing greater gains than Group A. Weight changes recorded at 12 weeks continued to exhibit a similar trend (Fig. 2).

4.1. Limitations

Study limitations include exclusion of potential direct breastfeeding which could have influenced total weight gain, unmeasured milk spillage, possibly overestimating intake, a short duration of the study.

Recommendations for Future Studies -Capture data on breastfeeding sessions to provide a holistic understanding of feeding effectiveness, using Objective Measurement Tools such as electronic feeding monitors or precise measurement systems . Conduct follow-ups over a longer period to assess sustained feeding effectiveness and growth outcomes.

5. Conclusion

This study adds to the growing body of evidence supporting the use of advanced materials, such as polyamide, in NAM appliances to improve feeding outcomes in CL/P infants. The flexibility, biocompatibility, and superior adaptability of polyamide NAMs provide significant advantages over traditional PMMA NAMs, particularly in long-term feeding efficiency and weight gain. These findings suggest that material innovation in NAM design has the potential to

significantly enhance the quality of care for CLP infants and their families.

6. Source of Funding

The authors declare that the study was self-funded.

7. Conflict of Interest

The authors declare no conflict of interest.

References

- Young JL, O'Riordan M, Goldstein JA, Robin NH. What information do parents of newborns with cleft lip, palate or both want to know? *Cleft Palate Craniofac J.* 2001;38(1):55–8. DOI: 10.1597/1545-1569_2001_038_0055_widpon_2.0.co_2.
- Avedian L, Ruberg R. Impaired weight gain in cleft palate infants. Cleft Palate J. 1980;17(1):24–6.
- Becker M, Svensson H, Källén B. Birth weight, body length, and cranial circumference in newborns with cleft lip and palate. *Cleft Palate Craniofac J.* 1998;35(3):255–61. DOI: 10.1597/1545-1569 1998 035 0255 bwblac 2.3.co 2.
- Jones WB. Weight gain and feeding in the neonate with cleft: a three-center study. Cleft Palate J. 1988;25(4):379–84.
- Choi BH, Kleinheinz J, Joos U, Komposch G. Sucking efficacy of early orthopaedic plate and teats in infants with cleft lip and palate. *Int J Oral Maxillofac Surg.* 1991;20(3):167–9. DOI: 10.1016/s0901-5027(05)80009-8.
- Gopinath VK, Muda WA. Assessment of growth and feeding in children with cleft lip and palate. Southeast Asian J Trop Med Public Health. 2005;36(1):254–8.
- Masarei AG, Sell D, Habel A, Mars M, Sommerland BC, Wade A. The nature of feeding in infants with unrepaired cleft lip and/or palate compared with healthy noncleft infants. *Cleft Palate Craniofac J.* 2007;44(3):321–8. DOI: 10.1597/05-185.
- 8. Madhoun LL, Crerand CE, O'Brien M, Baylis AL. Feeding and growth in infants with cleft lip and/or palate: relationships with maternal distress. *Cleft Palate Craniofac J.* 2021;58(4):470–8. DOI: 10.1177/1055665620956873.
- Goldberg WB, Ferguson FS, Miles RJ. Successful use of a feeding obturator for an infant with a cleft palate. Spec Care Dent. 1988;8(2):86–9. DOI: 10.1111/j.1754-4505.1988.tb00699.x.
- McNeil C. Congenital cleft palate; a case of congenital cleft palate which required the fitting of a special appliance. Br Dent J. 1948;84(7):137–41.
- Oliver HT. Construction of orthodontic appliances for the treatment of newborn infants with clefts of the lip and palate. *Am J Orthod*. 1969;56(5):468–73. DOI: 10.1016/0002-9416(69)90208-5.
- Kogo M, Okada G, Ishii S, et al. Breastfeeding for cleft lip and palate patients using the Hotz-type plate. *Cleft Palate Craniofac J*. 1997;34(4):351–3. DOI: 10.1597/1545-1569 1997 034 0350 bffcla 2.3.co 2
- Turner L, Jacobsen C, Humenczuk M. The effects of lactation education and a prosthetic obturator appliance on feeding efficiency in infants with cleft lip and palate. Cleft Palate Craniofac J. 2001;38:519–24. DOI: 10.1597/15451569_2001_038_0519_teolea 2.0.co 2.
- Hansen PA, Cook NB, Ahmad O. Fabrication of a feeding obturator for infants. Cleft Palate Craniofac J. 2016;53(2):240–4. DOI: 10.1597/14-029.
- Prahl C, Kuijpers-Jagtman AM, Van 't Hof MA, Prahl-Andersen B. Infant orthopedics in UCLP: effect on feeding, weight, and length: a randomized clinical trial (Dutchcleft). Cleft Palate Craniofac J. 2005;42(2):171–7. DOI: 10.1597/03-111.1.
- Matsuo K, Hirose T. Preoperative non-surgical overcorrection of cleft lip nasal deformity. Br J Plast Surg. 1991;44(1):5–1. DOI: 10.1016/0007-1226(91)90168-j

- Grayson BH, Santiago PE, Brecht LE, Cutting CB. Presurgical nasoalveolar molding in infants with cleft lip and palate. *Cleft Palate Craniofac J.* 1999;36(6):486–98. DOI: 10.1597/1545-1569 1999 036 0486 pnmiiw 2.3.co 2.
- Gomez DF, Donohue ST, Figueroa AA, Polley JW. Nasal changes after presurgical nasoalveolar molding (PNAM) in the unilateral cleft lip nose. *Cleft Palate Craniofac J.* 2012;49(6):689–700. DOI: 10.1597/11-007.
- Yunus N, Rashid AA, Azmi LL, Abu Hassan MI. Some flexural properties of a nylon denture base polymer. *J Oral Rehabil*. 2005;32(1):65–71. DOI: 10.1111/j.1365-2842.2004.01370.x
- Takabayashi Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. *Dent Mater J.* 2010;29(4):353–61. DOI: 10.4012/dmj.2009-114
- Hamanaka I, Takahashi Y, Shimizu H. Mechanical properties of injection-molded thermoplastic denture base resins. *Acta Odontol Scand.* 2011;69(2):75–9. DOI: 10.3109/00016357.2010.517557
- Rau A, Ritschl LM, Mücke T, Wolff KD, Loeffelbein DJ (2015)
 Nasoalveolar Molding in Cleft Care—Experience in 40 Patients from a Single Centre in Germany. PLOS ONE 10(3): e0118103. https://doi.org/10.1371/journal.pone.0118103
- Kümbüloğlu Ö, Yildirim B, Al-Haj Husain N, Özcan M. Adhesion potential of relining materials to polyamide and PMMA-based denture base materials: effect of surface conditioning methods. *J Adhes Sci Technol*. 2019;33(17):1939–47. DOI:10.1080/01694243.2019.1617935
- Shimpo H, Ohkubo C. Bonding of auto-polymerized poly(methyl methacrylate) resin to polyamide thermoplastic resin. *Asian Pac J Dent.* 2019;19(2):65–9. DOI:10.47416/apjod.19-0266.
- Danner SC. Breastfeeding the infant with a cleft defect. NAACOGS Clin Issues Perinat Womens Health Nurs. 1992;3(4):634–9.
- Pathumwiwatana P, Tongsukho S, Naratippakorn T, Pradubwong S, Chusilp K. The first 6 months after childbirth at Srinagarind Hospital, Khon Kaen Province, Thailand. *J Med Assoc Thai*. 2010;93(4):S71–7.
- Britton KFM, McDonald SH, Welbury RR. An investigation into infant feeding in children born with a cleft lip and/or palate in the West of Scotland. Eur Arch Paediatr Dent. 2011;12(5):250-5. DOI: 10.1007/BF03262817
- Al Khateeb KA, Fotouh MA, Abdelsayed F, Fahim F. Short-term efficacy of presurgical vacuum-formed nasoalveolar molding aligners in infants with unilateral cleft lip and palate: A prospective

- clinical trial. Cleft Palate Craniofac J. 2021;58(7):815–23. DOI: 10.1177/1055665620966189
- Oday R, Abid M, Dziedzic A. The accuracy and retention of presurgical infant orthopaedics constructed from different polymer materials: A comparative study. *J Taibah Univ Med Sci.* 2024;19(2):379–89. DOI: 10.1016/j.jtumed.2024.01.005.
- Alansari N, Abid M, Dziedzic A. Enhanced antimicrobial efficacy of chlorhexidine-encapsulated halloysite nanotubes incorporated in presurgical orthopedic appliances: an in vitro, controlled study. Clin Oral Investig. 2024;28(1):68. DOI: 10.1007/s00784-023-05464-7.
- 31. Martin V, Greatrex-White S. An evaluation of factors influencing feeding in babies with a cleft palate. *J Child Health Care*. 2014;18(1):72–83. DOI: 10.1177/1367493512473853.
- Woods SM, Garfinkle JS, Covell DA J, Wang M, Busch LS, Doyle LM. Early Weight Gain in Infants With Cleft Lip and Palate Treated With and Without Nasoalveolar Molding: A Retrospective Study. Cleft Palate Craniofac J. 2019;56(7):902–7. DOI: 10.1177/1055665618815396.
- Shaw WC, Bannister RP, Roberts CT. Assisted feeding is more reliable for infants with clefts--a randomized trial. *Cleft Palate Craniofac* J. 1999;36(3):262–8. DOI: 10.1597/1545-1569 1999 036 0262 afimrf 2.3.co 2.

Cite this article: Gnaneswar SM, Anandan N. Feeding effectiveness of nasoalveolar molding appliances made with polymethyl methacrylate vs. polyamide in newborns with unilateral cleft lip and palate: A randomized controlled trial. J Contemp Orthod. 2025;9(4):506–514.